

THE RADIATION SPECTRA

RANGE	WAVELENGTH	% OF LIGHT
UV-C	> 280 nm	0
UV-B	280-320 nm	0,5
UVA-A	320-400 nm	5,6
VIS - visible	400-800 nm	
IR-A	800-1400 nm	29,4
IR-B	1400-3000 nm	12,7
IR-C	> 3000 nm	"Neglectable for testing"

THEORY OF WEATHERING

Each material has its own spectral sensitivities. For organic materials these sensitivities are mostly indicated to be situated within the "UV range".

EXAMPLE HUMAN SKIN

RANGE	WAVELENGTH	EFFECT
UV-C Light	170-280 nm	skin cancer
UV-B Light	280-315 nm	skin irritation
UV-A Light	315-380 nm	suntan

SPECTRAL SENSITIVITIES OF POLYMERS

PE	300-310, 340
PP	290-300, 330, 370
PS	320-325
PA	290-315
PC	280-310
SAN	310-330, 290
ABS	300-310, 370-385
PMMA	290-315

All indications in nanometer wavelength Literature: ATLAS MTS

SEVEN WORLD CLIMATES

2_POLAR

6_HUMID MICRO THERMAL

DRY DESERT.

3_TROPICAL RAINY

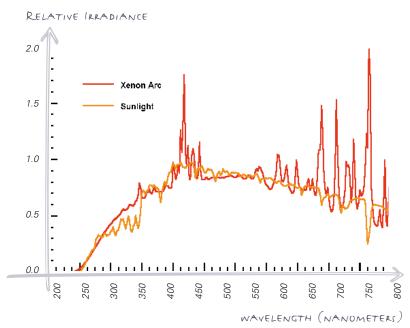
NATURAL CLIMATE HAS LARGE VARIETY

7_UNDIFFERENTIATED HIGHLANDS

ENVIRONMENTAL INFLUENCES

LIGHT	spectral energy irradiation
WATER	quantity state of aggregation (humidity, dew)
	lens effects of droplets
THERMAL	(specimen-)temperature exposed variations duration
CHEMICALS	gases, polluting substances, dust,dirt, "biologicals", pesticides

TIME-LAPSE FACTORS

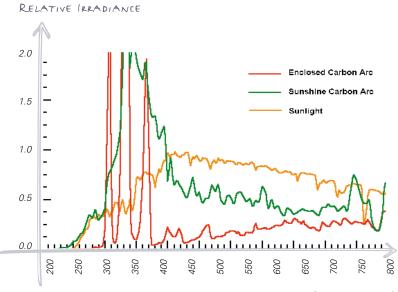

NATURAL WEATHERING ON DEFINED LOCATIONS Florida, Arizona, ... time-lapse to middle Europe 1,5:1

ARTIFICIAL WEATHERING AS ALTERNATIVE

time-lapse to middle Europe 4-6:1

Defined conditions are necessary. *Literature: WMO*

SUNLIGHT VS. XENON ARC LAMP



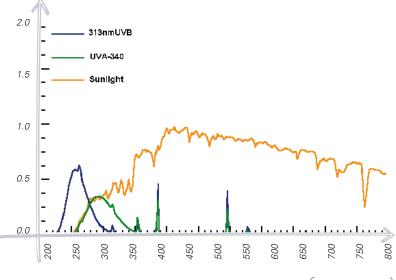
XENON ARC LAMP

The xenon arc lamp, when properly filtered, simulates UV and visible solar radiation more closely than any other artificial light source. The spectral power distribution is altered through filtering to simulate solar radiation. It is widely preferred as a light source when the material to be tested will be exposed to natural sunlight.

Literature: ATLAS MTS

SUNLIGHT VS. CARBON ARC LAMP

CARBON ARC LAMP


Carbon Arc lamps deliver high amounts of UV Radiation. They were the very first device for artificial weather testing. However, they were replaced in most cases by Xenon Arc lamps.

WAVELENGTH (NANOMETERS)

Literature: ATLAS MTS

SUNLIGHT VS. FLUORESCENT UV LAMP

RELATIVE IRRADIANCE

FLUORESCENT UV LAMP

Low cost lamps to simulate narrow UV irradiation under specific conditions. They do not cause heating effects through visible or infrared light. The comparison to service lifetime performance or correlation to outdoor exposures is not possible.

WAVELENGTH (NANOMETERS) Literature: ATLAS MTS

NORMATIVE STANDARDS

Selected out of many normative standards for artificial weathering

NATURAL WEATHERING STANDARDS

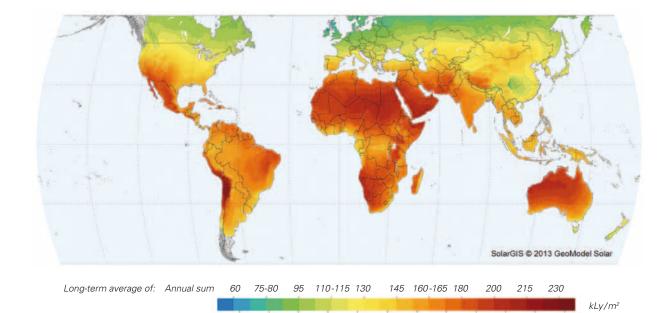
International standard	ISO 2810
Automotive standards	SAE J576
Product specification	CSTB

ARTIFICIAL WEATHERING STANDARDS

Xenon arc sources	ISO 4892
QUV Accelerated	
Weathering Test	ASTM G 154

YOU WILL LEARN MORE ABOUT OUR TESTING METHODS FROM THE PAGES THAT FOLLOW - FOR A LONGER LIFE EXPECTANCY OF YOUR PLASTIC PRODUCTS ->

THE GABRIEL-CHEMIE TEST METHOD


REFERING TO ISO 4892 – 2 XENON ARC SOURCES

		GC METHOD	
Method A: "Outdoor" Simulation	control: 340 nm	х	
Method B: "behind glass panel"	control: 420 nm		
Black Panel Temperature:	65°C or 100°C	65°C	
Rel. Humidity:	50% or 65%	50 %	
Chamber Temperature:	not defined	40°C	
Cycles: 102 Minutes dry,			
18 Minutes water spray		Х	
light/dark cycles possible		light only	
		light only	

CONVERSIONS & DEFINITIONS

TO ARTIFICIAL WEATHERING TESTS

Irradiance:	0,50 W/m ² at 340nm equivalent 60 W/m ² range 300-400nm equivalent 550 W/m ² range 290-800nm equivalent 950 W/m ² total radiation
1 hour weathering	equivalent 3,4 MJ/m² equivalent 81,82 Langley
1,360 hours weathering	equivalent 110 kLy or 4,6 GJ/m ²
2,100 hours weathering	equivalent 170 kLy equivalent 1 ½ years Middle Europe
2,500 hours weathering	equivalent 2 years Middle Europe

WORLD MAP OF GLOBAL IRRADIATION

BUSINESS UNITS OF GABRIEL-CHEMIE GROUP:

Cosmetics Packaging

GABRIEL-CHEMIE Gesellschaft m. b. H. Industriestraße 1 2352 Gumpoldskirchen Austria Tel. +43 2252 636 30 0 Fax +43 2252 627 25 0 info@gabriel-chemie.com

WWW.GABRIEL-CHEMIE.COM